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Abstract. We introduce the notion of L2-rigidity for von Neumann alge-
bras, a generalization of property (T) which can be viewed as an analogue
for the vanishing of 1-cohomology into the left regular representation of
a group. We show that L2-rigidity passes to normalizers and is satisfied
by nonamenable II1 factors which are non-prime, have property Γ , or are
weakly rigid. As a consequence we obtain that if M is a free product of dif-
fuse von Neumann algebras, or if M = LΓ where Γ is a finitely generated
group with β

(2)
1 (Γ ) > 0, then any nonamenable regular subfactor of M is

prime and does not have properties Γ or (T). In particular this gives a new
approach for showing solidity for a free group factor thus recovering a well
known recent result of N. Ozawa.

1. Introduction

In their pioneering work of the 80’s Connes and Jones ([C3], [CJ]) intro-
duced the notion of property (T) (or rigidity) for II1 factors by requiring
that any sequence of subunital, subtracial completely positive maps which
converge pointwise in ‖ · ‖2 to the identity also converge uniformly in ‖ · ‖2
to the identity on (N)1. This type of rigidity phenomenon (and it’s relative
version later introduced by Popa [P4]) has since led to the solution of many
old problems in von Neumann algebras and orbit equivalence ergodic the-
ory ([C2], [IPP], [P3], [P4], [P5]). In [Pe] it was shown that property (T) is
equivalent to a vanishing 1-cohomology type result for closable derivations
into arbitrary Hilbert bimodules. This equivalence is achieved in part by
using Sauvageot’s results ([S1], [S2], [CiS]) which state that there is a bi-
jective correspondence between densely defined real closable derivations
into Hilbert bimodules and semigroups of unital, tracial completely positive
maps.

For an inclusion of finite von Neumann algebras (N ⊂ M) one cannot
hope to obtain such a cohomological characterization of relative property (T)
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(even if N itself has property (T)) as there is no guarantee that a closed
derivation δ on M is even densely defined on N much less inner. However
we will always have that the associated semigroup will converge uniformly
in ‖ · ‖2 to id on (N)1 and thus we may interpret this fact as saying that δ
“vanishes” on N.

In this paper we will use the above techniques to investigate closable
derivations into the coarse correspondence L2(N) ⊗ L2(N). We will say
that an inclusion of finite von Neumann algebra (B ⊂ N) is L2-rigid if
all derivations which arise in this way “vanish” in the above sense on
B, and we will say that a finite von Neumann algebra N is L2-rigid if
the inclusion (N ⊂ N) is L2-rigid, (see Definition 4.1 for the precise
definition). Derivations into the coarse correspondence appear naturally in
the context of Voiculescu’s nonmicrostates approach to free entropy [V],
and also play a central role in studying the first L2-Betti number of a von
Neumann algebra as introduced by Connes and Shlyakhtenko [CSh] (see
also [T]). This should be compared to the situation for groups where Bekka
and Valette [BV] have shown that for a finitely generated nonamenable
group the first L2-Betti number vanishes if and only if the first cohomology
group into the left regular representation vanishes.

We will show that given a nonamenable subfactor Q ⊂ N and a densely
defined real closable derivation from N into (L2(N) ⊗ L2(N))⊕∞ then the
derivation must “vanish” on Q′∩N. Furthermore we will show that from the
mixing property of the coarse correspondence that if Q′ ∩ N is diffuse then
we further have that the derivation “vanishes” on W∗(NN(Q′ ∩ N)). Taking
a free ultrafilter ω, and using a slight modification of the above arguments
using Nω we will also show that if N is a nonamenable factor which
has property Γ of Murray and von Neumann [MvN] then any derivation
as above must “vanish” on N. Recall that a II1 factor N is non-prime if
N = Q ⊗ B where both Q and B are infinite dimensional. The main result
is the following:

Theorem 1.1 Let N be a II1 factor which is non-prime or has property Γ ,
then N is L2-rigid.

The above theorem shows that L2-rigidity is a very weak rigidity type
phenomenon (for instance R ⊗ LF2 is L2-rigid even though it has
Haagerup’s compact approximation property [H1]). On the other hand we
will see that if N is a free product of diffuse finite von Neumann algebras
or if N = LΓ where Γ is a finitely generated group with β

(2)
1 (Γ ) > 0, then

N is not L2-rigid.
In [P1] Popa showed that for the uncountable free groups, their group

factors are prime. Using techniques from Voiculescu’s free probability this
was shown by Ge to also be the case for countable free groups [Ge]. This
was generalized to all free products of diffuse finite von Neumann algebras
which embed into Rω by Jung [J].

Recall that if M is a finite von Neumann algebra, then a subalgebra
B ⊂ M is said to be regular in M if the set of unitaries u ∈ U(M) which
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satisfy uBu∗ = B generates M as a von Neumann algebra. From the above
remarks we have the following:

Theorem 1.2 Let M be a free product of diffuse finite von Neumann alge-
bras or M = LΓ where Γ is a finitely generated group with β

(2)
1 (Γ ) > 0,

then any regular nonamenable subfactor of M is prime and does not have
properties Γ or (T).

Using techniques from C∗-algebra theory Ozawa was able to show not
just that the free group factors are prime but that in fact they are solid [O1],
i.e. the commutant of any diffuse subalgebra is amenable. As an application
of Theorem 1.1 we obtain a new approach to Ozawa’s result using the fact
that the free groups have the “L2-Haagerup property”, i.e. there exist proper
cocycles into direct sums of the left regular representation.

Theorem 1.3 Let Γ be a countable discrete group such that there exists
a proper cocycle b : Γ → (�2Γ )⊕∞, (for example Γ = Fn, 2 ≤ n ≤ ∞).
Then LΓ is solid.

It should be noted that although the above result gives a new proof
of Ozawa’s theorem for the case of the free groups, it is a quite different
approach than in [O1]. Indeed, we use the fact that Γ has Haagerup’s
property in a crucial way. Whereas in [O1] the above is shown for all
hyperbolic groups, many of which have property (T). We also note that
S. Popa in [P6] has recently given another proof of Ozawa’s theorem for
specific case of the free group factors.

In Sect. 5 we investigate derivations which naturally appear in free prod-
ucts of von Neumann algebras. These derivations give rise to deformations
by free products of multiples of the identity, thus we may extend the Kurosh
type theorem in [IPP, Theorem 0.1] to include many von Neumann subalge-
bras which do not have relative property (T). The first Kurosh type theorem
in von Neumann algebras was obtained by Ozawa [O2] using C∗-algebra
theory.

Theorem 1.4 Let M1 and M2 be finite factors and let M = M1 ∗ M2.
If Q ⊂ M is a subfactor such that Q ′ ∩ M is a nonamenable factor, or if
Q ⊂ M is a nonamenable subfactor with property Γ and Q′ ∩ M is a factor,
then there exists i ∈ {1, 2} and a unitary operator u ∈ U(M) such that
uQu∗ ⊂ Mi.

In Sect. 6 we consider the case of a tensor product of II1 factors
M = M1 ⊗ · · · ⊗ Mn , such that each Mi has a derivation into it’s coarse
correspondence which does not “vanish”. We show that if Q is a regular
nonamenable subfactor then there exists a corner of Q′ ∩ M which embeds
into M′

i for some i ≤ n, where M′
i is the von Neumann subalgebra obtained

by replacing Mi with C in the above tensor product. Ozawa and Popa [OP]
gave examples of tensor products of von Neumann algebras which have
unique prime factorization. Using the conjugacy results in [OP] we are able
to give new examples of this type.
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Theorem 1.5 Let Mi be nonamenable II1 factors 1 ≤ i ≤ m, such that
each Mi is a non-trivial free product or LΓ for some finitely generated group
Γ with β

(2)
1 (Γ ) > 0, assume N1 ⊗ · · · ⊗ Nn = M1 ⊗ · · · ⊗ Mm, for some

prime II1 factors N1, . . . , Nn, then n = m and there exist t1, t2, . . . , tm > 0
with t1t2 · · · tm = 1 such that after permutation of indices and unitary
conjugacy we have Ntk

k = Mk, ∀k ≤ m.
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2. Preliminaries and notation

Suppose N is a finite von Neumann algebra with normal faithful trace τ ,
D(δ) ⊂ N is a weakly dense ∗-subalgebra, H is an N–N Hilbert bimodule,
and δ : D(δ) → H is a derivation (δ(xy) = xδ(y) + δ(x)y, ∀x, y ∈ D(δ)),
which is closable (as an unbounded operator from L2(N, τ) to H), and real
(〈δ(x), yδ(z)〉 = 〈δ(z∗)y∗, δ(x∗)〉, ∀x, y, z ∈ D(δ)).

It follows from [S1] and [DL] that D(δ) ∩ N is a ∗-subalgebra of N
and δ|D(δ)∩N is again a derivation. Let ∆ = δ∗δ, then ∆ is the generator
of a completely Dirichlet form [S1]. By a deformation on a von Neumann
algebra we mean a net of completely positive maps which converge to the
identity pointwise in ‖ · ‖2. Associated to ∆ are two natural deformations
of N, the first is the completely positive semigroup (completely Markovian
semigroup) {φt}t>0, each φt = exp (−t∆) is a c.p. map which is unital
(φt(1) = 1), tracial (τ ◦ φt = τ), and positive (τ(φt(x)x∗) ≥ 0, ∀x ∈ N),
moreover the semigroup property is satisfied (φt+s = φt ◦ φs, ∀s, t > 0),
and ∀x ∈ N, ‖x−φt (x)‖2 → 0, as t → 0. The second deformation associated
to ∆ is the deformation coming from resolvent maps {ηα}α>0, again each
ηα = α(α + ∆)−1 is a unital, tracial, positive, c.p. map such that ∀x ∈ N,
‖x − ηα(x)‖2 → 0, as α → ∞, furthermore βηα − αηβ = (β − α)ηα ◦ ηβ ,
∀α, β > 0.

The relationship between these maps are as follows and can be found
for example in [MR]:

∆ = lim
t→0

1

t
(id − φt) = α

(
η−1

α − id
) = lim

α→∞ α(id − ηα),

φt = exp(−t∆) = lim
α→∞ exp(−tα(id − ηα)),

ηα = α(α + ∆)−1 = α

∫ ∞

0
e−αtφtdt.
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Note that we will use the same symbols ∆, φt , and ηα for the maps
on N as well as the corresponding extensions to L2(N, τ). Also note that
ηα maps into the domain of ∆ and ∆ ◦ ηα = α(id − ηα). Furthermore we
have that Range(ηα) = D(∆) ⊂ D(δ), D(∆

1
2 ) = D(δ) = Range(η1/2

α ) and
∀x ∈ D(δ), ‖∆ 1

2 (x)‖2 = ‖δ(x)‖2.
If B ⊂ N is a von Neumann subalgebra we will say that a deformation

{Φι}ι converges uniformly on (B)1 if ∀ε > 0, ∃ι0 such that ∀ι > ι0, b ∈ (B)1
we have that ‖b − Φι(b)‖2 < ε.

Lemma 2.1 Let (N, τ) be a finite von Neumann algebra, B ⊂ N a von
Neumann subalgebra, and {φt}t , {ηα}α deformations as above. The deform-
ation {ηα}α converges uniformly on (B)1 as α → ∞ if and only if the
deformation {φt}t converges uniformly on (B)1 as t → 0.

Proof. Since 0 ≤ φt ≤ id, ∀t > 0 we have that ∀x ∈ N, t �→
τ((x − φt(x))x∗) is a non-negative valued function, also since

τ
(
(x − φt+s(x))x

∗) = τ
(
(x − φt(x))x

∗)

+ τ
(
(φt/2(x) − φs(φt/2(x)))φt/2(x)

∗)

≥ τ
(
(x − φt(x))x

∗),

we have that t �→ τ((x − φt(x))x∗) decreases to 0 as t → 0. Hence
if {φt}t does not converge uniformly on (B)1 as t → 0 then ∃c0 > 0 such
that ∀t > 0, ∃xt ∈ (B)1, such that τ((xt − φt(xt))x∗

t ) ≥ c0. Therefore
τ((xt −η1/t(xt))x∗

t ) = ∫ ∞
0 e−sτ((xt −φst(xt))x∗

t )ds ≥ ∫ ∞
1 e−sc0ds = c0e−1,

thus {ηα}α does not converge uniformly on (B)1 as α → ∞.
Conversely if {φt}t does converge uniformly on (B)1 as t → 0, then

∀x ∈ (B)1 we have ‖x − ηα(x)‖2 ≤ ∫ ∞
0 es‖x − φs/α(x)‖2ds and since

‖x − φt(x)‖2 ≤ 2, ∀x ∈ (B)1, t > 0 it follows that {ηα}α also converges
uniformly on (B)1 as α → ∞.

Finally we mention that ∆
1
2 also generates a completely Dirichlet form

as is shown in [S3] by the formula: ∆
1
2 = π−1

∫ ∞
0 t−1/2(id − ηt)dt.

Example 2.2 Suppose Γ is a countable discrete group, π : Γ → O(K)
is an orthogonal representation, and b : Γ → K is a 1-cocycle. Then
associated to this cocycle is a conditionally negative definite function ψ
given by ψ(γ) = ‖b(γ)‖2

2, there is also a semigroup of positive definite
functions {ϕt}t given by ϕt(γ) = e−tψ(γ), and the set of positive definite
resolvents {χα}α given by χα(γ) = α/(α + ψ(γ)).

Let H = K ⊗R L2(LΓ ) and equip H with the LΓ bimodule structure
which satisfies uγ (ξ ⊗ ξ ′) = π(γ)ξ ⊗ uγ ξ ′ and (ξ ⊗ ξ ′)uγ = ξ ⊗ ξ ′uγ ,
∀γ ∈ Γ , ξ ∈ H , ξ ′ ∈ L2(LΓ ). Let δb : CΓ → H be the derivation which
satisfies δb(uγ ) = b(γ) ⊗ uγ , ∀γ ∈ Γ , then δb is a real closable derivation
and so as described above we can associate with δb the c.c.n. map ∆ along
with the deformations {φt}t and {ηα}α. It can be easily checked that we have
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the following relationships:

∆(uγ ) = ψ(γ)uγ , ∀γ ∈ Γ,

φt(uγ ) = ϕt(γ)uγ , ∀γ ∈ Γ, t > 0,

ηα(uγ ) = χα(γ)uγ , ∀γ ∈ Γ, α > 0.

Note that in this case we have that if Λ < Γ then the derivation δb|CΛ

is inner if and only if the cocycle b|Λ is inner if and only if the deformation
{ηα}α converges uniformly on (LΛ)1. Note also that if K is the left regular
representation of Γ then H is the coarse correspondence for LΓ .

Example 2.3 Suppose (M1, τ1) and (M2, τ2) are finite diffuse von Neumann
algebras, and let (M, τ) = (M1 ∗ M2, τ1 ∗ τ2). If we let δi : M1 ∗Alg M2 →
L2(M) ⊗ L2(M) be the unique derivation which satisfies δi(x) = x ⊗ 1 −
1 ⊗ x, ∀x ∈ Mi and δi(y) = 0, ∀y ∈ Mj where j �= i. Then it is easy
to check that δi defines a closable real derivation and a simple calculation
(see for example Corollary 4.2 and the following remark in [Pe]) shows
that the associated semigroups of c.p. maps are given by φ1

s = (e−2sid +
(1− e−2s)τ)∗ id, and φ2

s = id ∗ (e−2sid + (1− e−2s)τ). In particular we have
that {φ j

s }s does not converge uniformly on (M)1 as s → 0.

3. Approximation properties

Throughout this section δ will be a real closable derivation on a finite von
Neumann algebra (N, τ), ∆ = δ∗δ the corresponding generator of a com-
pletely Dirichlet form, and also {ηα}α, and {φt}t will be the deformations
described above.

In the following sections it will be necessary to consider various norms
on a finite von Neumann algebra. Specifically the uniform norm, L1-norm
and L2-norm will all play a role. We will also be considering norms on
various Hilbert spaces as well. In an effort to eliminate confusion we will
use the notation ‖ · ‖1 to denote the L1-norm on a von Neumann algebra,
‖ · ‖ will denote the uniform norm on a von Neumann algebra, while ‖ · ‖2
will denote both the L2-norm on a von Neumann algebra as well as the
Hilbert space norm on a Hilbert space. The reason we have chosen this
convention is because the L2-norm on a finite von Neumann algebra (N, τ)
is a pre-Hilbert space norm, and the completion of N with respect to the
L2-norm gives rise to the Hilbert N–N bimodule L2(N, τ). As we will focus
mostly on the coarse bimodule L2(N) ⊗ L2(N), the Hilbert space norm
we will mostly be interested in will be the L2-norm coming from N ⊗ N.

Lemma 3.1 If x, y, xy ∈ D(∆), then ‖∆(x)y + x∆(y) − ∆(xy)‖1 ≤
2‖δ(x)‖2‖δ(y)‖2.

Proof. ∀z ∈ D(δ) such that ‖z‖ ≤ 1 we have

|τ(∆(x)yz + x∆(y)z − ∆(xy)z)|
= |〈δ(x), δ(z∗y∗)〉 + 〈δ(y), δ(x∗z∗)〉 − 〈δ(xy), δ(z∗)〉|
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= |〈δ(x), δ(z∗ y∗)〉 + 〈δ(y), δ(x∗z∗)〉 − 〈xδ(y) + δ(x)y, δ(z∗)〉|
= |〈δ(x), z∗δ(y∗)〉 + 〈δ(y), δ(x∗)z∗〉|
≤ ‖δ(x)‖2‖z∗δ(y∗)‖2 + ‖δ(y)‖2‖δ(x∗)z∗‖2 ≤ 2‖δ(x)‖2‖δ(y)‖2.

As D(δ) is weakly dense the result follows by applying Kaplansky’s
theorem.

Lemma 3.2 Let {ηα}α be the deformation described above, ∀α > 0, η1/2
α =

π−1
∫ ∞

0
t−1/2

1+t ηα(1+t)/tdt, also (id − ηα)
1/2 = π−1

∫ ∞
0

t−1/2

1+t (id − ηtα/(1+t))dt.

Proof. ∀α > 0, t > 0 we have:

ηα(t + ηα)
−1 = ηα((t(α + ∆) + α)(α + ∆)−1)−1

= 1

t
ηα(α + ∆)

(
α(1 + t)

t
+ ∆

)−1

= α

t

(
α(1 + t)

t
+ ∆

)−1

= 1

(1 + t)
ηα(1+t)/t.

Hence η1/2
α = π−1

∫ ∞
0 t−1/2ηα(t + ηα)

−1dt = π−1
∫ ∞

0
t−1/2

1+t ηα(1+t)/tdt.
The formula for (id − ηα)

1/2 is shown similarly.

Since the range of η1/2
α is the same as the domain of δ we may take the

composition δ ◦ η1/2
α to obtain a bounded operator from L2(N, τ) to H

whose norm is no more than (2α)1/2. In fact α‖x − ηα(x)‖2
2 ≤ ‖δ ◦

η1/2
α (x)‖2

2 = ατ((x − ηα(x))x∗) ≤ α‖x − ηα(x)‖2, ∀x ∈ N. It will be
convenient therefore to use the following notation, we will let ζα = η1/2

α ,
and we will let δ̃α = α−1/2δ ◦ ζα. The next lemma shows that δ̃α is almost
a derivation and will be a key lemma used throughout this paper. We note
that in the following estimate the term δ̃α(a) will be uniformly small for
a ∈ F and thus we may omit this term from the inequality. We have chosen
to keep this term however in order to emphasize the fact that δ̃α is almost
a derivation.

Lemma 3.3 Using the same notation as above if F ⊂ (N)1, such that
{ηα}α converges uniformly on F (F possibly infinite), then ∀ε > 0, ∃α0 > 0,
such that ∀α ≥ α0 we have that ‖δ̃α(ax) − ζα(a)δ̃α(x) − δ̃α(a)ζα(x)‖2

2 < ε,
and ‖δ̃α(xa) − δ̃α(x)ζα(a) − ζα(x)δ̃α(a)‖2

2 < ε, ∀a ∈ F, x ∈ (N)1.

Proof. We will prove the lemma in two parts. First we show that the
vectors δ̃α(ax) and ζα(a)δ̃α(x) + δ̃α(a)ζα(x) have approximately the same
size, and then we show that the vectors have large inner product. The
main difficulty is that we may not apply the product rule to a vector of
the form α−1/2δ ◦ ζα(ax) and thus in order to estimate the size on an
inner product we must translate the expression to terms involving ∆

1
2 and

then use Lemmas 3.1 and 3.2 to estimate these expressions. Note that
by [S3], ∆

1
2 again generates a completely positive semigroup and hence
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is of the form δ∗
0δ0 for some closable derivation δ0, thus we may apply

Lemma 3.1. However some care is involved here as Lemma 3.1 only gives
an estimate in ‖ · ‖1 and thus we must make sure that when we apply
Lemma 3.1 the term we are taking the inner product with is bounded in
uniform norm.

Thus each of the parts above separates into three steps. The first step
we use the properties of the derivation to set up the ‖ · ‖1 estimate from
Lemma 3.1, the second step we translate to terms involving ∆

1
2 and use

Lemma 3.1, and the third step we use Lemma 3.2 and then translate back
into terms with the derivation to finish the estimate.

Let F ⊂ (N)1 be given as above and let ε > 0. It follows from
Lemma 3.2 and Sect. 1.1.2 of [P4] that ∃α0 > 0 such that ∀α ≥ α0 we have
‖a − ηα(a)‖2 < (ε/64)4, ‖a − ζα(a)‖2 < ε/100, and ‖a(id − ηα)

1/2(x) −
(id − ηα)

1/2(ax)‖2 ≤ π−1
∫ ∞

0
t1/2

1+ t ‖aηtα/(1+ t)(x) − ηtα/(1+ t)(ax)‖2 < ε/100,
∀a ∈ F, x ∈ (N)1. Then by using the product rule for the derivation we
have

∣
∣α−1‖δ(ζα(a)ζα(x))‖2

2 − α−1〈δ(ζα(x)), δ(ζα(a
∗)ζα(a)ζα(x))〉

∣
∣

≤ 8‖δ̃α(a)‖2 ≤ 8‖a − ηα(a)‖1/2
2 < ε/8. (1)

By Lemma 3.1 we have
∣∣α−1

〈
∆

1
2 ◦ ζα(x),∆

1
2 (ζα(a

∗)ζα(a)ζα(x))
〉

− α−1〈∆
1
2 ◦ ζα(x), ζα(a

∗)ζα(a)∆
1
2 ◦ ζα(x)

〉∣∣

≤ 2α−1/2
∥
∥∆

1
2 (ζα(a

∗)ζα(a)ζα(x)) − ζα(a
∗)ζα(a)∆

1
2 ◦ ζα(x)

∥
∥

1

≤ 2α−1/2
∥∥∆

1
2 (ζα(a

∗)ζα(a))
∥∥

1 + 4α−1/4
∥∥∆

1
4 (ζα(a

∗)ζα(a))
∥∥

2

≤ 4‖a − ηα(a)‖1/2
2 + 8‖a − ηα(a)‖1/4

2 < ε/4. (2)

Also from the assumptions above we have

α−1
∣
∣
∥
∥ζα(a)∆

1
2 ◦ ζα(x)

∥
∥2

2 − ∥
∥∆

1
2 ◦ ζα(ax)

∥
∥2

2

∣
∣

≤ 4α−1/2
∥
∥ζα(a)∆

1
2 ◦ ζα(x) − ∆

1
2 ◦ ζα(ax)

∥
∥

2

≤ 8‖ζα(a) − a‖2 + 4
∥
∥a(id − ηα)

1/2(x) − (id − ηα)
1/2(ax)

∥
∥

2 < ε/8. (3)

Hence by combining (1), (2), and (3) we have shown
∣
∣
∥
∥α−1/2δ(ζα(a)ζα(x))

∥
∥2

2 − ‖δ̃α(ax)‖2
2

∣
∣ < ε/2. (4)

Similarly by using the product rule we obtain that
∣
∣α−1〈δ(ζα(a)ζα(x)), δ(ζα(ax))〉 − α−1〈δ(ζα(x)), δ(ζα(a

∗)ζα(ax))〉∣∣
≤ 4‖δ̃α(a)‖2 ≤ 4‖a − ηα(a)‖1/2

2 < ε/16. (5)
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Again by Lemma 3.1 we have
∣∣α−1

〈
∆

1
2 ◦ ζα(x),∆

1
2 (ζα(a

∗)ζα(ax))
〉

− α−1〈∆
1
2 ◦ ζα(x), ζα(a

∗)∆
1
2 ◦ ζα(ax)

〉∣∣

≤ 2α−1/2
∥
∥∆

1
2 (ζα(a

∗)ζα(ax)) − ζα(a
∗)∆

1
2 ◦ ζα(ax)

∥
∥

1

≤ 2α−1/2
∥∥∆

1
2 ◦ ζα(a

∗)ζα(ax)
∥∥

1 + 4α−1/4
∥∥∆

1
4 ◦ ζα(a

∗)
∥∥

2

≤ 2‖a − ηα(a)‖1/2
2 + 4‖a − ηα(a)‖1/4

2 < ε/8. (6)

Also from the assumptions above we have
∣
∣α−1〈ζα(a)∆

1
2 ◦ ζα(x),∆

1
2 ◦ ζα(ax)

〉 − α−1
∥
∥∆

1
2 ◦ ζα(ax)

∥
∥2

2

∣
∣

≤ 4‖ζα(a) − a‖2 + 2
∥∥a(id − ηα)

1/2(x) − (id − ηα)
1/2(ax)

∥∥
2 < ε/16.

(7)

Thus using (5), (6), and (7) we have
∣∣〈α−1/2δ(ζα(a)ζα(x)), δ̃α(ax)

〉 − ‖δ̃α(ax)‖2
2

∣∣ < ε/4. (8)

Hence by (4) and (8) we have that

‖δ̃α(ax) − ζα(a)δ̃α(x) − δ̃α(a)ζα(x)‖2
2

= ∥∥δ̃α(ax) − α−1/2δ(ζα(a)ζα(x))
∥∥2

2

= ‖δ̃α(ax)‖2
2 − 2�〈

α−1/2δ(ζα(a)ζα(x)), δ̃α(ax)
〉 + ∥

∥α−1/2δ(ζα(a)ζα(x))
∥
∥2

2

≤ ∣∣‖δ̃α(ax)‖2
2 − ∥∥α−1/2δ(ζα(a)ζα(x))

∥∥2
2

∣∣

+ 2
∣
∣〈α−1/2δ(ζα(a)ζα(x)), δ̃α(ax)

〉 − ‖δ̃α(ax)‖2
2

∣
∣ < ε.

The estimate for ‖δ̃α(xa) − δ̃α(x)ζα(a) − ζα(x)δ̃α(a)‖2
2 < ε follows

by applying the ∗-operation and using the fact that δ is a real deriva-
tion.

4. L2-rigidity

Definition 4.1 Let N be a finite von Neumann algebra with trace τ , if M
is a finite von Neumann algebra with trace τ ′ such that N ⊂ M, τ ′|N = τ ,
and δ is a densely defined real closable derivation on M into (L2(M, τ ′) ⊗
L2(M, τ ′))⊕∞ then we say that the associated deformation {ηα}α is an
L2-deformation for N.

If B ⊂ N is a von Neumann subalgebra, the inclusion (B ⊂ N) is
L2-rigid (or B is an L2-rigid subalgebra of N) if any L2-deformation for N
converges uniformly on (B)1. We will say that N is L2-rigid if the inclusion
(N ⊂ N) is L2-rigid.
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Remark 4.2 1. It follows trivially that if (B ⊂ N) is a rigid inclusion in
the sense of [P4] then (B ⊂ N) is L2-rigid, in particular L2-rigidity is
weaker then property (T).

2. By the definition it follows that if M is a finite von Neumann algebra with
normal faithful trace τ and B ⊂ N ⊂ M are von Neumann subalgebras,
then (B ⊂ M) is L2-rigid if (B ⊂ N) is L2-rigid.

3. If Γ is a discrete group such that H1(Γ, �2Γ ) �= {0} then from Ex-
ample 2.2 in Sect. 2 we have that LΓ is not L2-rigid. Also if (M1, τ1)
and (M2, τ2) are finite diffuse von Neumann algebras then from Ex-
ample 2.3 in Sect. 2 we have that (M1 ∗ M2, τ1 ∗ τ2) is not L2-rigid.

4. If Γ is a countable discrete group which has a proper cocycle b : Γ →
(�2Γ )⊕∞ (for instance Γ = Fn, 1 ≤ n ≤ ∞) then LΓ has no diffuse
L2-rigid von Neumann subalgebra. Indeed if {ηα}α is the associated
deformation then ηα ∈ K(L2(LΓ )), ∀α > 0 and thus if B ⊂ LΓ
is a von Neumann subalgebra such that ∀ε > 0, ∃α0 > 0 such that
∀α > α0, x ∈ B1 we have ‖x − ηα(x)‖2 < ε then we must have that B
is completely atomic (see for example Theorem 5.4 in [P4]).

Suppose Γ = Γ1 × Γ2 where Γ1 is infinite and Γ2 is nonamenable,
let us now sketch a simple proof that H1(Γ, �2Γ ) = {0} (see also Corol-
lary 10 in [BV]). Suppose b : Γ → �2Γ is a 1-cocycle, as Γ2 is non-
amenable �2Γ does not weakly contain the trivial representation for Γ2
(see [MV]), hence ∃K > 0, γ1, . . . , γn ∈ Γ2 such that ∀ξ ∈ �2Γ ,
‖ξ‖2 ≤ K

∑n
i=1 ‖λ(γi)ξ − ξ‖2. In particular we have that ∀γ ∈ Γ1,

‖b(γ)‖2 ≤ K
∑n

i=1 ‖λ(γi)b(γ)−b(γ)‖2 = K
∑n

i=1 ‖λ(γ)b(γi)−b(γi)‖2 ≤
2K

∑n
i=1 ‖b(γi)‖2. Thus we have shown that b|Γ1 is bounded and hence we

may subtract from b an inner cocycle and assume that b|Γ1 = 0. Therefore
we have that ∀γ ∈ Γ2, b(γ) is a Γ1-invariant vector, and since Γ1 is infinite
we must then have that b(γ) = 0. Thus we have shown that b = 0.

In Theorems 4.3 and 4.5 we will use the same idea as above to show that
if N = Q ⊗ B is a II1 factor where Q is nonamenable and B is diffuse (has
no minimal projections) then N must be L2-rigid. Note that given a closable
derivation δ on N there is no reason to expect that Q or B is contained in
the domain of δ, thus it is necessary to use δ̃α which is everywhere defined
and by Lemma 3.3 is almost a derivation. To obtain the final result we
will then apply Connes’ characterization of amenability [C1] which states
that a factor is amenable if ‖∑n

i=1 ui ⊗min (u∗
i )

op‖ = n, for all unitaries
u1, . . . , un (we will use Lemma 2.2 in [H2] for the non-factor case).

Given a free ultrafilter ω, and a unital, tracial, c.p. map φ on a finite
von Neumann algebra (N, τ) we may extend φ to a unital, tracial, c.p. map
on Nω by setting φ(x) = (φ(xn))n if x = (xn)n. If {φι}ι is a deformation
on N which does not converge uniformly on (N)1 then the extension to Nω

does not converge pointwise in ‖ · ‖2 to id. We will show however in the
next theorem that if Q is a nonamenable subfactor then not only does an
L2-deformation converge pointwise but it actually converges uniformly to
id on (Q′ ∩ Nω)1.
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Theorem 4.3 Suppose (N, τ) is a finite von Neumann algebra with normal
faithful trace τ and {ηα}α is an L2-deformation for N. If Q ⊂ N is a sub-
algebra with no non-zero amenable summands and ω is a free ultrafilter
then {ηα}α converges uniformly on (Q′ ∩ Nω)1 as α → ∞. In particular the
inclusion (Q′ ∩ N ⊂ N) is L2-rigid.

Proof. Take (N, τ) ⊂ (M, τ ′) and let ηα : M → M be an L2-deformation.
By a simple maximality argument there exists q ∈ P (Z(Q)) the maximal
projection for which the deformation ηα converges uniformly on (Bq)1
where B = Q′ ∩ Nω. We will show that Q(1 − q) is amenable.

By Lemma 2.2 in [H2] to show that Q(1 − q) is amenable it is enough
to show that ∀p ∈ P (Z(Q)), 0 < p ≤ 1 − q, we have

n =
∥
∥∥

n∑

i=1

ui ⊗min
(
u∗

i

)op
∥
∥∥, ∀u1, . . . , un ∈ U(Qp).

Note that as a Qp–Qp bimodule (L2(M) ⊗ L2(M))⊕∞ is just a direct sum
of coarse correspondences and so the representations of Qp and Qpop on H
given by the left and right module structures induce the minimal tensor norm.

Let p ∈ P (Z(Q)), 0 < p ≤ 1 − q, by the maximality of q we have
that ηα does not converge uniformly on (Bp)1, hence ∃c > 0 such that
∀α > 0, ∃xα ∈ (Bp)1 such that ‖xα − ηα(xα)‖2 > c.

Let ε > 0, u1, . . . , un ∈ U(Qp). By Lemma 3.3 let α0 > 0 such that
∀α ≥ α0, 1 ≤ i ≤ n, x ∈ (N)1 we have ‖ζα(ui)δ̃α(x)ζα(u∗

i )−δ̃α(ui xu∗
i )‖2 <

cε/2n.
Let xα = (xk

α)k where ‖xk
α‖ ≤ 1, ∀k ∈ N then ∃k = k(α) ∈ N such that

‖ui xk
αu∗

i −xk
α‖2 < cε/4n, ∀1 ≤ i ≤ n, and ‖δ̃α(xk

α)‖2 ≥ ‖xk
α−ηα(xk

α)‖2 ≥ c.
Therefore since ‖δ̃α(ui xk

αu∗
i − x)‖2 ≤ 2‖ui xk

αu∗
i − x‖2 we have that

n ≤ ∥∥δ̃α

(
xk

α

)∥∥−1
2

∥∥
∥

n∑

i=1

δ̃α

(
ui x

k
αu∗

i

)∥∥
∥

2
+ ε/2

≤ ∥
∥δ̃α

(
xk

α

)∥∥−1
2

∥∥
∥

n∑

i=1

ζα(ui)δ̃α

(
xk

α

)
ζα(u

∗
i )

∥∥
∥

2
+ ε

≤
∥
∥∥

n∑

i=1

ζα(ui) ⊗min (ζα(u
∗
i ))

op
∥
∥∥ + ε

≤
∥∥
∥

n∑

i=1

ui ⊗min (u∗
i )

op
∥∥
∥ + ε.

Since ε was arbitrary we have that n ≤ ‖∑n
i=1 ui ⊗min (u∗

i )
op‖ and thus

Q(1 − q) is amenable.

Corollary 4.4 Let Γ be a countable group and suppose there exists a proper
cocycle b : Γ → �2(Γ )⊕∞, then L(Γ ) is solid, i.e. if B ⊂ L(Γ ) is dif-
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fuse then B′ ∩ L(Γ ) is amenable. In particular all nonamenable subfactors
of L(Γ ) are prime.

Proof. This follows directly from Theorem 4.3 and Remark 4.2.

We will now show that L2-rigidity passes to normalizers of diffuse
subalgebras.

Theorem 4.5 Suppose (N, τ) is a finite von Neumann algebra with normal
faithful trace τ and {ηα}α is an L2-deformation for N. If ω is a free ultrafilter
and B ⊂ Nω is a diffuse von Neumann subalgebra such that {ηα}α converges
uniformly on (B)1, then {ηα}α converges uniformly on W∗(N ∩ NNω (B))1.
In particular if B ⊂ N is a diffuse von Neumann subalgebra and (B ⊂ N)
is L2-rigid, then (W∗(NN(B)) ⊂ N) is also L2-rigid.

Proof. Let 1 ≥ ε > 0, using Lemma 3.3 ∃α0 > 0 such that ∀α > α0,
x = (xn)n ∈ B1 (with ‖xn‖ ≤ 1), y ∈ N1 we have limn→ω ‖ηα(xn)−xn‖2 <

ε/4, and limn→ω ‖ζα(xn)δ̃α(y) + δ̃α(xn)ζα(y) − δ̃α(xn y)‖2 < ε/4. Take
v ∈ N ∩ NNω (B) and α > α′

0, then since B is diffuse, by the mixing property
of the coarse correspondence we have that ∃u = (un)n ∈ U(B) (with un ∈
U(N)) such that ‖δ̃α(v)‖2 ≤ limn→ω ‖ζα(un)δ̃α(v)ζα(v

∗u∗
nv) − δ̃α(v)‖2.

Hence we have:

‖v − ηα(v)‖2
2

≤ ‖δ̃α(v)‖2
2

≤ lim
n→ω

‖ζα(un)δ̃α(v)ζα(v
∗u∗

nv) − δ̃α(v)‖2
2

≤ lim
n→ω

(‖δ̃α(un)‖2 + ‖δ̃α(un)ζα(v) + ζα(un)δ̃α(v) − δ̃α(unv)‖2

+ ‖δ̃α(v
∗u∗

nv)‖2 + ‖δ̃α(unv)ζα(v
∗u∗

nv) + ζα(unv)δ̃α(v
∗u∗

nv) − δ̃α(v)‖2)
2

< ε2,

as the maps ηα are tracial the result then follows by using the equivalence
between c.p. maps and Hilbert bimodules and a standard convexity argument
(see e.g. the proof of Theorem 4.2 in [P2], or the proof of Proposition 5.1
in [P4]).

Corollary 4.6 If N is a nonamenable II1 factor which is non-prime or has
property Γ , then N is L2-rigid.

Proof. If N = Q ⊗ B with Q a nonamenable factor then by Theorem 4.3
we have that (B ⊂ N) is L2-rigid. If B is diffuse then by Theorem 4.5 we
then have that N is L2-rigid.

Also if N is a nonamenable factor then by Theorem 4.3 if ω is a free
ultrafilter then any L2-deformation converges uniformly on (N ′ ∩Nω)1, if N
has property Γ then N ′ ∩ Nω is diffuse and so from Theorem 4.5 we would
have that the L2-deformation converges uniformly on (N)1.



L2-rigidity in von Neumann algebras 429

Corollary 4.7 Let N be a finite von Neumann algebra such that N is a free
product of diffuse finite von Neumann algebras or let N = LΓ where Γ is
a countable group with H1(Γ, �2(Γ )) �= {0}.
1. If B ⊂ N is a regular diffuse subalgebra then B′ ∩ N has a non-zero

amenable summand.
2. Any nonamenable regular subfactor of N is prime and does not have

properties Γ or (T).

Proof. 1. If B′ ∩ N has no non-zero amenable summand then by The-
orem 4.3 we would have that (B ⊂ N) is L2-rigid, hence by The-
orem 4.5 we would have that N is L2-rigid and thus the result follows
from Remark 4.2.

2. By Corollary 4.6 and Theorem 4.5 if N has a regular subfactor which is
non-prime or has properties Γ or (T) then N is L2-rigid and so as above
the result follows from Remark 4.2.

Note that if Γ is finitely generated and nonamenable then by [BV]
H1(Γ, �2(Γ )) �= {0} if and only if β

(2)

1 (Γ ) > 0. For nonamenable groups
which are not finitely generated it follows from a result of Gaboriau that if
H1(Γ, �2(Γ )) �= {0} then β

(2)

1 (Γ ) > 0, however the reverse implication is
open [MV].

5. L2-rigid subalgebras in free product factors

Let (Mi, τi), i = 1, 2 be finite von Neumann algebras, denote M =
M1 ∗ M2. Let δi : M1 ∗Alg M2 → L2(M) ⊗ L2(M) be the unique derivation
which satisfies δi(x) = x ⊗ 1 − 1 ⊗ x, ∀x ∈ Mi and δi(y) = 0, ∀y ∈ Mj

where j �= i. Then as above we have that φ1
s = (e−2sid + (1 − e−2s)τ) ∗ id,

and φ2
s = id ∗ (e−2sid + (1 − e−2s)τ) are the associated semigroups of c.p.

maps.
If Q is an L2-rigid subalgebra of M then we may interpret the fact that

the above deformations converge uniformly on (Q)1 as saying that Q has
“bounded word length”. Thus one would expect that a “corner of Q embeds
into either M1 or M2” (see [P5, Theorem 2.1]). We will show in this section
that this is indeed the case, we do this by first showing that Q must be rigid
with respect to the deformations used in [IPP], then we may apply the word
reduction argument in [IPP] (Theorem 4.3) which gives the result.

Recall that if we let H0
i = L2(Mi) � C then we may decompose

L2(M1 ∗ M2) in the usual way as

L2(M1 ∗ M2) = C⊕
⊕

n≥1

⊕

ij ∈{1,2}
i1 �=i2,...,in−1 �=in

H0
i1 ⊗ H0

i2 ⊗ · · · ⊗ H0
in .
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Lemma 5.1 Let (M1, τ1), (M2, τ2) be finite von Neumann algebras. As
in Sect. 2.2 of [IPP] denote M = M1 ∗ M2, M̃j = Mj ∗ L(Z), j = 1, 2,
and M̃ = M̃1 ∗ M̃2 = M ∗ L(F2). Let hj ∈ L(F2) be self-adjoint elements
such that uj = exp(πihj), where u1, u2 ∈ L(F2) are the canonical gen-
erators of L(F2). Let ut

j = exp(πithj), and set θt = Ad(ut
1) ∗ Ad(ut

2) ∈
Aut(M̃), a one parameter group of automorphisms. Suppose Q ⊂ M is
a von Neumann subalgebra, then the deformation {θt}t converges uniformly
on (Q)1 as t → 0 if and only if the deformations {φ j

s }s converge uniformly
on (Q)1 as s → 0, j = 1, 2.

Proof. Let ε0 > 0 such that τ(ut
j) �= 0, ∀t < ε0, j = 1, 2. Let t < ε0,

it is then a simple exercise to check that if fj(t) = − log(|τ(ut
j)|) then

τ(θt(x)x∗) = τ(φ
j
fj (t)

(x)x∗), ∀x ∈ Mj . In fact using the direct sum decom-
position above one sees that if x = x1x2 · · · xn , where i j ∈ {1, 2}, j ≤ n,
i1 �= i2, . . . , in−1 �= in, and xj ∈ H0

ij
, ∀ j ≤ n. Then in fact we have that

τ(θt(x)x
∗) = τ

(
θt(x1)x

∗
1

) · · · τ(
θt(xn)x

∗
n

)

= τ
(
φ

i1
fi1 (t)(x1)x

∗
1

) · · · τ(
φ

in
fin (t)(xn)x

∗
n

) = τ
(
φ1

f1(t)
◦ φ2

f2(t)
(x)x∗).

Moreover since both of the maps θt |M and φ1
f1(t)

◦ φ2
f2(t)

take orthogonal
vectors to orthogonal vectors we have that

τ
(
θt(x)x

∗) = τ
(
φ1

f1(t) ◦ φ2
f2(t)(x)x

∗), ∀x ∈ M.

Since ‖φ1
f1(t) ◦ φ2

f2(t)
(x) − x‖2 ≥ ‖φ j

fj (t)
(x) − x‖2, ∀x ∈ M, j = 1, 2,

and since fj(t) → 0, j = 1, 2 as t → 0 the result follows easily.

Corollary 5.2 Let M1 and M2 be separable II1 factors, and let M =
M1 ∗ M2. If (Q ⊂ M) is L2-rigid with Q diffuse then there exists a unique
pair of projections q1, q2 ∈ Q′ ∩ M such that q1 +q2 = 1, and ui(Qqi)u∗

i ⊂
Mi for some unitaries ui ∈ U(M), i = 1, 2. Moreover, these projections lie
in the center of Q′ ∩ M.

Proof. Suppose (Q ⊂ M) is L2-rigid, then by definition we have that the
deformations {φ j

s }s, converge uniformly to id on (Q)1 as s → 0, hence
by Lemma 5.1 the deformation {θt}t also converges uniformly on (Q)1
as t → 0. A check of Theorem 4.3 in [IPP] shows that these are the
only two facts used from the rigid inclusion. Thus the result follows from
Theorems 4.3 and 5.1 in [IPP].

6. Unique prime factorization and non-L2-rigid factors

In this section we will adapt Theorems 4.3 and 4.5 and use Popa’s inter-
twining technique along with the results in [OP] in order to show that if
Mi are II1 factors which have derivations into L2(Mi) ⊗ L2(Mi) which do
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not “vanish” then the tensor product has unique prime factorization (up to
amplification and unitary conjugation of the factors). In order to satisfy the
conditions of Popa’s intertwining criteria (Theorem 2.1 in [P5]) it will be ne-
cessary to assume that the derivation is actually densely defined on Mi . This
is a formally stronger condition then the negation of L2-rigidity, however
note that both Examples 2.2 and 2.3 in Sect. 2 satisfy this condition.

For the following theorem if M = M1 ⊗ M2 ⊗ · · · ⊗ Mm then we will
denote by M̂i the resulting von Neumann subalgebra obtained by replacing
Mi with C1 so that M = Mi ⊗ M̂i ,

Theorem 6.1 Let Mi be nonamenable II1 factors 1 ≤ i ≤ m, suppose
that each Mi has a densely defined real closable derivation into (L2(Mi) ⊗
L2(Mi))

⊕∞ such that the associated L2-deformation does not converge
uniformly on (Mi)1. Let M = M1 ⊗ M2 ⊗ · · · ⊗ Mm. Assume that B ⊂ M
is a regular type II1 factor such that B′ ∩ M is a nonamenable subfactor.
Then ∃k ∈ {1, . . . , m}, t > 0 and a unitary element u ∈ U(M) such that
uBu∗ ⊂ (M̂k)

t ⊗C ⊂ (M̂k)
t ⊗ (Mk)

1/t = M. If in addition we have that the
L2-deformations above may all be taken compact then the same conclusion
follows if we drop the hypothesis that B is regular.

Proof. Let δi
0 : Mi → (L2(Mi) ⊗ L2(Mi))

⊕∞ be a densely defined clos-
able real derivation such that the corresponding deformation {ηi

α} does not
converge uniformly on (Mi)1. Then we may embed (L2(Mi) ⊗ L2(Mi))

⊕∞
into Hi = (L2(M) ⊗M̂i

L2(M))⊕∞ in the natural way as Mi–Mi Hilbert
bimodules and we then may extend δi

0 to a densely defined closable real
derivation δi on M by setting δi(x) = 0, ∀x ∈ M̂i . We denote by {η̂i

α}
the corresponding deformations on M, so that η̂i

α = ηi
α ⊗ id, also let

ζ̂ i
α = ζ i

α ⊗ id = (η̂i
α)

1/2.
We will proceed as in Theorem 4.3 to show that if each {η̂i

α} does
not converge uniformly on (B)1 then we must have that Q = B′ ∩ M is
amenable. Indeed if this is the case then ∃c > 0, such that ∀α > 0, i ≤ m,
∃xi

α ∈ (B)1 such that ‖xi
α − η̂i

α(x
i
α)‖2 ≥ c. Let ε > 0, u1, . . . , un ∈ U(Q).

By Lemma 3.3 let α0 > 0 such that ∀α ≥ α0, x ∈ (B)1, 1 ≤ i ≤ n we have
‖ζ̂α(ui)δ̃

i
α(x)ζ̂α(u∗

i )− δ̃i
α(ui xu∗

i )‖2 < cmε/2nm and ‖ζ̌ i
α(ui)xζ̌ i

α(u
∗
i )−x‖2 <

cmε/4nm, where ζ̂α = ζ1
α ◦ · · · ◦ ζm

α and ζ̌ i
α is obtained by omitting ζ i

α

from ζ̂α.
Let MHM = H1 ⊗M H2 ⊗M · · · ⊗M Hm , and note that H may be

embedded into (L2(M) ⊗ L2(M))⊕∞ as M–M Hilbert bimodules. Let ξα =
δ̃1
α(x

1
α)⊗· · ·⊗ δ̃m

α (xm
α ) ∈ H then we have that ‖ξα‖2 ≥ cm and following the

same proof as in Theorem 4.3 we have that n ≤ ‖∑n
i=1 ui ⊗min (u∗

i )
op‖+ ε.

Since ε was arbitrary we have that Q is amenable.
Therefore if B′ ∩ M is a nonamenable factor then we have shown that

∃k ≤ m such that the deformation {η̂k
α} converges uniformly on (B)1. Next

we show that if this is the case then we have that a corner of B embeds into
M̂k inside of M, i.e. there exists a non-zero projection f in B′ ∩ 〈M, eM̂k

〉
of finite trace Tr = Tr〈M,eM̂k

〉.
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If we do not have that a corner of B embeds into M̂k inside of M then
by Corollary 2.3 of [P5] there exists a sequence of unitaries {un}n ⊂ U(B)

such that ∀x ∈ M, ‖EM̂k
(xun)‖2 → 0, as n → ∞. Since ζ̂

k
α|M̂k

= id we
have that ∀x ∈ M, ‖EM̂k

(xζ̂ k
α(un))‖2 → 0, as n → ∞, and since M̂k is

regular in M this implies ‖EM̂k
(xζ̂ k

α(un)y)‖2 → 0, as n → ∞, ∀x, y ∈ M.
In particular this shows that ∀v ∈ NM(B), ∃u ∈ U(B) such that

∥∥ζ k
α(u)δ̃k

α(v)ζ
k
α(v

∗u∗v) − δ̃k
α(v)

∥∥
2 ≥ ∥∥δ̃k

α(v)
∥∥

2 (9)

On the other hand since B is regular and since {ηk
α}α does not converge

uniformly on (M)1, ∃c0 > 0 such that ∀α > 0, ∃vα ∈ NM(B) such that
‖δ̃k

α(vα)‖2 ≥ ‖vα − ηk
α(vα)‖2 ≥ c0. By Lemma 3.3 ∀ε > 0, ∃α0 > 0 such

that ∀α ≥ α0, u ∈ U(B) we have that
∥
∥ζ k

α(u)δ̃k
α(vα)ζ

k
α(v∗

αu∗vα) − δ̃k
α(vα)

∥
∥

2 < ε.

Thus for ε < c0 we have
∥
∥ζ k

α(u)δ̃k
α(vα)ζ

k
α(v

∗
αu∗vα) − δ̃k

α(vα)
∥
∥

2 <
∥
∥δ̃k

α(vα)
∥
∥

2,

for each u ∈ U(B), which contradicts (9).
If B is not regular but each deformation is compact then we may apply

the proof of Theorem 6.2 in [P4] to show that a corner of B embeds into M̂k
inside of M in this case also.

Thus in either case since B′ ∩ M is a factor we may then apply Prop-
osition 12 in [OP] to obtain the result.

As a consequence of the previous theorem, we obtain from [OP] the
following unique prime factorization result.

Corollary 6.2 Let Mi be nonamenable II1 factors 1 ≤ i ≤ m, suppose
that each Mi has a densely defined real closable derivation into (L2(Mi) ⊗
L2(Mi))

⊕∞ such that the associated L2-deformation does not converge
uniformly on (Mi)1. Assume N1 ⊗ · · · ⊗ Nn = M1 ⊗ · · · ⊗ Mm, for some
prime II1 factors N1, . . . , Nn, then n = m and there exist t1, t2, . . . , tm > 0
with t1t2 · · · tm = 1 such that after permutation of indices and unitary
conjugacy we have Ntk

k = Mk, ∀k ≤ m.
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